
P.01w w w.hackerrank.com

w w w . h a c k e r r a n k . c o m

How to Screen
Software
Engineers

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=cover_hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=cover_link
https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=cover_cursor

P.02w w w.hackerrank.com

I N T R O D U C T I O N

Introduction▉

When faced with a flood of candidates for a senior individual contributor position, it’s
really difficult to gauge their skills. Interviewing for different levels is also difficult because
seniority is hard to define. It’s a multitude of elements, including deep technical skills,
leadership qualities and maturity. It’s hard to embody the latter soft skills on a resume.
Technical skills, on the other hand, can be assessed using programming interview questions.

Traditionally, companies don’t ask coding interview questions until after they’ve
screened their resumes or LinkedIn profiles. And they usually ask them to code manually
on whiteboards. By then, you’ve already sunk in countless hours of manpower from
recruiters and engineering managers. But there are many famous studies proving that
resumes are a poor indicator of success (more on this later). It’s just how people have
always screened people. When we want to hire great engineers, we ask candidates to prove
their skills first and foremost through online programming interview questions. For the
purpose of this piece, let’s refer to these questions as “code challenges.”

Today, over a thousand companies across industries, including VMware, Box and Capital
One, have adopted this technique of using code challenges as the first step in their evalu-
ation process for senior engineers. Since we power the screening process for thousands
of candidates daily, we have a lot of insight into what works and what doesn’t.

After analyzing thousands of code submissions, and interviewing several directors
of engineering and consultants, we created this guide to design and deliver the most
optimal code challenges for your potential senior engineering individual contributors.
In the process, we explain why fundamentals are critical for all programmers—no matter
how experienced. If this 4,000 word in-depth guide is too long, you can always jump
ahead if you’d like. But we really recommend investing some time to consider
the proven ways of conducting great interviews.

The Complete Guide to Crafting Impactful
Interview Coding Challenges

By implementing code challenges as an early step in the evaluation process, you can
partially qualify candidates and pinpoint the candidates on whom you should spend
more time evaluating emotional intelligence and other characteristics.

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://www.forbes.com/sites/vivekravisankar/2015/05/04/the-rise-and-looming-fall-of-the-engineering-whiteboard-interview/#67e75d0471ba
http://www.forbes.com/sites/vivekravisankar/2015/05/04/the-rise-and-looming-fall-of-the-engineering-whiteboard-interview/#67e75d0471ba

P.03w w w.hackerrank.com

Part I: Why Assessing Fundamental Skills is Important

a. You Get Qualified Long-Term Team Members, Not Quick Wins

b. You Build Long-Lasting, Not Fragile Products

c. You Never Reinvent the Wheel

d. But the Interview Can’t Be “One-Size-Fits-All”

e. More Companies Should Prepare Candidates

Part II: How to Create a Successful Screening Process

a. Before You Do Anything

b. Design Impactful Challenges

- The Challenge Checklist

d. Set Expectations, Warm Your Candidates

e. Calibrate After the Screening

01

02

Table of Contents▉

Get in touch with us

Request Demo Free Trial

Or visit HackerRank.com

T A B L E O F C O N T E N T S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://hackerrank.com/request-demo/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=firstpage_requestdemo_button
https://hackerrank.com/work/signup?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=firstpage_freetrial_button
https://hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=firstpage_visit_link

P.04w w w.hackerrank.com

For nearly as long as companies have hired programmers, managers have asked
engineering candidates to solve fundamental algorithm and data structure problems.
And for nearly just as long, engineers have debated the validity of these challenges in
job interviews.

The argument is: If I’m never going to balance a tree on the job, why would you ask
these fundamental coding questions to gauge my skillset? At first pass, this can
be infuriating for senior engineers. Who’s going to remember basic tree-traversal
from computer science (CS) courses when you’ve been using easier, faster standard
libraries for years?

But what’s not as emphasized as often is the value of basic CS fundamentals for
most roles. Everyone knows the best strategy for screening candidates is to test for
whatever’s important for the job, but simple algorithm questions actually play an
important role in uncovering what engineers can and can’t do. If you dig deeper,
engineers who can’t complete basic algorithmic code challenges in an interview are
actually less productive hires in the long run.

If you don’t test for CS fundamentals, you’ll risk hiring programmers who are only
good at getting things done in the short-term. They can put together decent code
using APIs and build a glowing portfolio. But if you ask them why their program works
the way it does, they’d see opaque black boxes. It’s like they’re assembling parts
together without a toolkit.

Over the past several years, there’s been a sharp boost in the number of APIs and
standard libraries. For instance, Salesforce, alone, has over 3 million applications in its
third-party app system. Look at the sharp rise in APIs in the last 10 years, according to
the ProgrammableWeb.

01 Why Assessing Fundamental
Skills is Important▉

You Get Qualified Long-Term Team Members,
Not Quick Wins

F U N D A M E N T A L S K I L L S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.05w w w.hackerrank.com

The uptick of these neat packages make it easy for programmers to get by without
revisiting the fundamentals. And that’s fine if you just want to hustle, get a quick win
and build a stunted product.

But most—if not all—accomplished programmers, from Donald Knuth to Ken Thompson,
value the importance of knowing why code works in building revolutionary products.
For instance, Knuth’s 1968 masterpiece, The Art of Programming, was the first time coders
could understand why algorithms work the way they do. “So my book sort of opened
people’s eyes: ‘Oh my gosh, I can understand this and adapt it so I can have elements that
are in two lists at once. I can change the data structure.’ It became something that could be
mainstream instead of just enclosed in these packages.”

Testing for algorithms and data structures also tests for lifelong curiosity. Engineers should
be “continually interested in keeping themselves up to speed, in revising the fundamentals
and taking on intriguing programming problems. Those are the people I want to work with,”
says Soham Mehta, CEO and co-founder of Interview Kickstart.

F U N D A M E N T A L S K I L L S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://techcrunch.com/2015/09/11/legendary-productivity-and-the-fear-of-modern-programming/

P.06w w w.hackerrank.com

“Formal CS training would have triggered a ‘too good to
be true’ alarm, well before [the engineer] deployed it, and
irrevocably lost user data in the process.”
- Ben Sigelman, Founder, LightStep

If you don’t test for CS fundamentals, it’s going to be really difficult for you to provide for
your growing base of customers. When scaling out architecture, you have to understand
how components work on a simpler, more fundamental level before applying them across
multiple machines. If your engineers open enough logic-related bugs, you could lose valu-
able customer information or create bottlenecks, resulting in a slow customer experience.

This happened to Ben Sigelman, an ex-Googler who founded a company called LightStep,
which builds monitoring and performance tools for developers of large distributed systems.
He recently worked with a well-intentioned engineer who decided to use Redis for scalable,
consistent and durable storage. But Redis is best as an in-memory data structure server
and does not—and cannot—scale well when placed into its “AOF” consistency mode*. In
that configuration, Sigelman says it’s much slower and less resilient than true distributed
databases that append to cluster-level file systems.

If you don’t test for CS fundamentals, optimizing your codebase is going to take a lot longer
than it should. Opponents argue that smart programmers use standard libraries to save
time. Why reinvent the wheel when someone else has already solved this problem for you?

But, remember, we’re not asking advanced algorithmic interview questions because engi-
neers will be writing algorithms from scratch on the job. We’re testing basic knowledge of
fundamentals to ensure engineers are not just relying on other people’s code, Stackover-
flow or Google. Otherwise, when you need to scale and optimize, you’ll waste a lot of time
trying to figure out optimal solutions. It’s not just about memorizing how to implement
algorithms. Learning the trade-offs between algorithms is valuable in boosting efficiency.
Simply testing candidates on knowledge of where trees fit in relative to sets or maps or
linked lists is valuable in and of itself.

You Build Long-Lasting, Not Fragile Products

You Never Reinvent the Wheel

F U N D A M E N T A L S K I L L S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://www.linkedin.com/in/bensigelman/

P.07w w w.hackerrank.com

Gayle Laakmann McDowell, author of Cracking the Coding Interview, offers a great
example of what happens when a senior engineer doesn’t revise fundamentals:

“A more senior engineer building a parsing engine might not understand how she
can leverage graph theory or trees. She could spend hours reinventing the wheel,
only to come up with something less optimal in the end.”

It’s the same for debugging. The most efficient way to debug requires fundamental
knowledge of how components behave with one another. Someone who doesn’t really
know how things work might put in logging everywhere in hopes of catching errors by
trial and error. A better way would be to systematically isolate issues by spotting patterns
in the errors. An engineer can only do this if he knows the system and its algorithm.

It’s especially important if you’re not quite sure which specific tools you’ll need. If you’re
building a long-lasting product, it’s crucial to test for timeless fundamentals that will be
the foundation of future programs. “The breadthfirst search algorithm, for instance, was
invented in 1959 as the solution to the shortest path in a maze, but it’s still indirectly
important to programmers today through some layer of abstraction,” says Dr. Heraldo
Memelli, who oversees all of the code challenges at HackerRank.

The assumption that senior engineers don’t need to know CS fundamentals on the job
couldn’t be further from the truth.

“Programming tools come and go, but fundamentals are forever.”

But the Interview Can’t Be “One-Size-Fits-All”

Of course, you can’t rely on general CS questions—alone—to hire for every role. The coding
challenges you select have to be appropriate for the role you need filled, and basic funda-
mentals are one bar that should be cleared.

Leo Polovets has had a lot of experience in designing great screening processes as the
second non-founding engineer at LinkedIn and engineer at Google. He offers a solid example:

“For a back-end candidate, you might give them a problem where they need lists, sets, and hash-
maps, and you want to make sure they use the right structure at the right time. For a front-end
candidate, a good question might be to ask them to do some basic DOM manipulation. These could
be 10–20 line programs, but they’ll still reveal a lot about what the person can and cannot do,”
Polovets says.

F U N D A M E N T A L S K I L L S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.08w w w.hackerrank.com

More Companies Should Prepare Candidates

It covers exactly what kind of algorithmic coding challenges they plan to ask and explain
why. Of the three phases of Facebook’s technical interview, one is called “Ninja,” which
screens the ability to solve tough coding challenges, like sorting algorithms. Any engi-
neer who applies to Facebook has to do really well on these interviews. It’s one of the key
reasons why Facebook has a world-class engineering team.

The assumption that you don’t need to know CS fundamentals on the job couldn’t be further
from the truth for most jobs. Well-designed basic algorithm and data structures challenges
are a good way to gauge depth of technical skills for sustainable products.

The reality is, algorithm and data structure inter-
view questions should be really easy—as long as
you have some warning, good prep material and
context for what interviewers really want to see.

Algorithmic coding challenges aren’t designed
to evaluate how well you think on your feet. In
fact, if you’re pop quizzing your candidates on
algorithms, you’re most likely turning away really
great people who happen to test poorly. The best
tech companies are preparing their candidates
as much as possible to create a stronger, more
successful talent pool.

Facebook invests in teaching an interview prep
class for all of their candidates. They realize that
senior engineers or folks who are self-taught will
need to prepare.

Gayle Laakmann Mcdowell
Founder, at CareerCup

F U N D A M E N T A L S K I L L S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://code.facebook.com/posts/

P.09w w w.hackerrank.com

“The questions don’t really matter. What matters first is a clear understanding of what you
need,” says Soham Mehta, CEO of Interview Kickstart. Optimize your time by spending 80%
to figure out what you need and 20% to craft the challenges.

The two most common values of great engineers are intelligence and technical knowledge.
Algorithm challenges are best used to test the former and knowledge or tool-based chal-
lenges are great for the latter.

But what most managers don’t realize is it’s better to keep these values mutually exclusive.
Testing for both at the same time puts far too many constraints, limiting your pool of talent.
So, how do you know what you need? It largely depends on the size of your company:

a. Finding Smart Senior Engineers
Large companies, like Google and Facebook, are infamous for their algorithm and data
structure challenges. When you have extensive teams, it’s better to hire for intelligence
than knowledge. You likely have enough engineers to teach newcomers your tech
stack. And smart people will be able to learn specific technologies pretty quickly anyway.

02 How to Create a Successful
Screening Process▉

Step 1: Before you do Anything

“The questions don’t really matter. What matters first is a clear
understanding of what you need.”
- Soham Mehta, CEO, Interview Kickstart

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://interviewkickstart.com/

P.10w w w.hackerrank.com

This is supported by an 85-year-long organizational research study that concludes:
“cognitive ability (or intelligence) tests are the best predictor of success across
fields.” Algorithm challenges, including ones that ask you to balance trees, are the
programming equivalent of “cognitive ability tests” because they test for reasoning,
problem solving and critical thinking skills.

What’s even more interesting is that the screening credentials commonly found on
resumes—like education, age (or experience) and academic achievement—ranked among
the worst predictors of success.

Years of hosting code challenges on behalf of high-growth companies reveal similar findings.

Some might argue that fundamental challenges are better geared toward junior engineers
since they’re unrelated to experience. I mean, why would a senior engineer need to balance
trees at this stage of her career, anyway? But McDowell, Mehta and just about every engi-
neering manager we know stresses that testing senior engineers who value fundamentals
is crucial for two reasons.

“Of the thousands of code challenges that companies like Amazon, VMware and Evernote
use, algorithm challenges have produced the most successful candidates.”
- Dr. Heraldo Memelli, Sr. Technical Content Engineering Manager, HackerRank

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://mavweb.mnsu.edu/howard/Schmidt%20and%20Hunter%201998%20Validity%20and%20Utility%20Psychological%20Bulletin.pdf
https://blog.hackerrank.com/why-should-senior-engineers-balance-trees-in-an-interview/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=pg10
https://blog.hackerrank.com/why-should-senior-engineers-balance-trees-in-an-interview/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=pg10

P.11w w w.hackerrank.com

In Step 1, we made the argument that you need to think about which you value more: intelli-
gence or knowledge. Now we’ll get to the core of the actual design of these questions. Broadly
speaking, we’ve found that there are three facets of technical skills you should test for:

The first two can be tested well before even interacting with the candidate using code
challenges. The third facet is best measured in person. This is the longest step of this guide
because we offer detailed examples of each category of challenges, as well as a crucial
checklist of biggest mistakes that companies make.

One, if algorithm challenges are the standard measure for intelligence for junior engineers
on your team, your bar has to be consistent for senior engineers as well. Otherwise, you’ll
hire a mix of smart junior engineers and, well, not-so-smart senior engineers.

Second, David Taylor, head of Sonos engineering, loves asking senior engineers data
structure and algorithm questions because “if candidates shy away from that, you have
a large red flag.” It’s a way to filter out folks who feel like they’re too good to roll up their
sleeves and revisit the basics.

Granted, the burden shouldn’t be entirely on the candidates. The onus is also on
companies to properly prepare senior engineering candidates to ace these fundamental
challenges. We’ll cover more on this in step 2.

b. Finding Knowledgeable Talent
Smaller companies—ones that can’t afford to wait for senior engineers to learn the tech
stack they need—are most likely to focus on knowledge over intelligence. By crafting
challenges that reveal technical knowledge in specific tools, you’ll attract engineers who
can start hacking a new application on day one. So, it’s better to focus on knowledge
specific challenges if you’re a stealthy startup.

Step 2: Designing Impactful Challenges

• How well does he or she know the fundamentals?
• How deep is his or her technical knowledge?
• How deeply can he or she think about problems?

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.12w w w.hackerrank.com

Designing Algorithm Code Challenges

There’s one thing you need to account for off the bat: Can they code? It sounds
obvious. But for years, notable engineers have repeatedly (2007, 2012 and as recent
as 2015) pointed out that “the vast majority of so-called programmers who apply for
programming job interviews are unable to write the smallest of programs,” says Jeff
Atwood, renowned programmer and cofounder of StackOverflow. You can weed
these folks out by asking them to solve a basic code challenge. Your first challenge
should be light and breezy.

Multiple Choice

Multiple choice code challenges are lightweight and are easier on the candidates.
Offer several questions, each with plenty of answer choices. That minimizes the
chance of getting correct answers by clicking randomly.

Before asking algorithm questions, Mehta, founder of a technical
interview preparation site, includes quick multiple-choice challenges
that test for some very basic CS fundamentals. e.g.:

01. Given N distinct numbers, how many subsets can you form?
[Answer: 2^N]

02. Given string of length N, how many permutations of that string exist?
[Answer: N!, or simply N x (N-1) x (N-2) … x 1]

Here’s a knowledge-based multiple choice example:

Which of the following properly describes a Loader?

Loaders make it easy to synchronously load data in an activity or fragment.

Loaders make it easy to asynchronously load data in an activity or fragment.

Loaders does not make it easy to asynchronously load data in an activity or fragment.

None of the above

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://blog.codinghorror.com/why-cant-programmers-program/
http://blog.codinghorror.com/how-to-hire-a-programmer/
http://www.thousandtyone.com/blog/EasierThanFizzBuzzWhyCantProgrammersPrint100To1.aspx

P.13w w w.hackerrank.com

The time required to search an element in a binary search tree having n elemnts is:

0(1)

0(log2n)

0(n)

0(n log2 n)

Here’s an algorithm-based multiple choice example:

Code Completion

Code completion is another lightweight style to consider as the first impression with
candidates. A code completion challenge is when candidates have to fill-in-the-blank
of a given piece of code. Some of the greatest programming minds of all time spend
a great deal of time reading source code. If you provide most of the code, and ask
candidates to fill in the lines, it’s an interesting way for candidates to solve a chal-
lenge while gauging critical thinking and their ability to read other people’s code.
Plus, it’s often more fun. We initiated a contest series exclusively for code completion
for our community of developers recently and it’s been one of the most engaging
contests we’ve ever held. Check out the contest for examples of sentence completion
code challenges which will help guide you in creating some of your own.

Designing Knowledge-Based Code Challenges

Unlike fundamental algorithm challenges, knowledge-based code challenges are much
more straightforward because they’re dependent on knowledge of a particular domain
or technology. For instance, challenges based on Client-Server, Sockets, Multi-threading
are good signals of seniority in distributed systems.

We asked Dr. Memelli to offer a great example of a knowledge-based code challenge:

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://techcrunch.com/2015/09/11/legendary-productivity-and-the-fear-of-modern-programming/
https://www.hackerrank.com/contests/magic-lines-july-2015/challenges?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=pg14
https://www.hackerrank.com/challenges/uds-echo-server/problem?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=pg15

P.14w w w.hackerrank.com

While intelligence-based challenges are the best predictors of success, there’s one
major differentiator between novice and an expert.

Designing Challenges that Gauge Depth of Thinking

And it’s not the years of experience. Rather, it’s how deeply can you think about problems?

Taylor defines experts as engineers who have proven ownership or thought leadership of
large systems, like services, apps or frameworks. With this experience of ownership and
tools, experts are scientifically proven to intuitively look at problems in deeper context than
novice programmers.

There are quite a few studies that support this:

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://www.forbes.com/sites/vivekravisankar/2015/09/29/techs-loophole-in-years-of-experience/#5b16d3535923

P.15w w w.hackerrank.com

Dreyfus & Dreyfus break down the levels of skill versus mental function.

Novice:

A second fascinating study similarly uses fMRI technology to measure
blood flow in the brain, comparing a novice artist and an expert artist.
Again, the findings were in line with what we’ve seen so far:

“Novices operate from an explicit rules and knowledge-based
perspective. They are deliberate and analytical, and therefore slower
to take action, they decide or choose.”

Experts operate from a mature, holistic well-tried understanding,
intuitively and without conscious deliberation. This is a function of
experience. They do not see problems as one thing and solutions as
another, they act.

Process information in the area that deals with features (surface-level).

Process information in the area that deals with deeper meaning.

Expert:

Novice:

Expert:

“The artist ‘thinks’ portraits more than he ‘sees’ them.”

So, how do you really test for depth in thinking? How do we know if engineers can think
about software rather than just see its code? Unlike the first two types of challenges
(algorithm and knowledge-based), which can be clear-cut automated challenges, ques-
tions that measure depth of thought are usually best accomplished in person. This way,
you can start off simple and proceed to make the problem statement more complex as
you proceed to work it out.

There are two different types of questions that can help you measure seniority by depth
of thought:

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA084551&Location=U2&doc=GetTRDoc.pdf
https://www.deepdyve.com/lp/mit-press/brain-activities-in-a-skilled-versus-a-novice-artist-an-fmri-study-pwz78XjO8S?articleList=%2Fsearch%3Fquery%3Dnovice%2Bversus%2Bexperts%26page%3D2

P.16w w w.hackerrank.com

a. Open-ended questions

After you have a vetted stream of candidates who pass the questions for technical aptitude,
asking open-ended questions about big picture strategy is a good way to gauge depth of
thought. Taylor finds success with questions like:

b. Infuse multiple parts in your challenges

Josh Tyler, who runs engineering at Course Hero and recently authored Building
Great Software Engineering Teams, says the most effective way to design challenges
for senior folks is to create lots of room for depth in the problem statement.

For instance, here’s an example of a good optimization question:

“You are given many words and you have to find frequencies of each word. Here,
simple maps, arrays, lists will not work when a huge number of words are given.
Instead, you should go for Trie, an efficient data structure here.“

Other examples of open-ended questions that are critical to test
seniority-level and leadership skills:

“Tell me something you did that had a big impact in a positive way as a
result of time to think and strategize. How about the negative impact?”

“I find that mistakes are made when technical people run straight into
the how we build something instead of challenging what the right thing
to build is and asking the customer-facing questions on what success
looks like,” he says.

• How do you build search for Gmail?
• Describe to me some bad code you’ve read or inherited lately
• When do you know your code is ready for production?

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://www.coursehero.com/
http://www.amazon.com/Building-Great-Software-Engineering-Teams/dp/1484211340/ref=sr_1_1?s=books&ie=UTF8&qid=1453333951&sr=1-1&keywords=Building+Great+Software+Engineering+Teams%3A
http://www.amazon.com/Building-Great-Software-Engineering-Teams/dp/1484211340/ref=sr_1_1?s=books&ie=UTF8&qid=1453333951&sr=1-1&keywords=Building+Great+Software+Engineering+Teams%3A

P.17w w w.hackerrank.com

“Most of our interview questions are designed in a way that has many
parts. A junior candidate usually only gets through the first part, whereas
senior folks get through the second or third parts.”
- Josh Tyler, EVP of Engineering & Design, Course Hero

Greg Badros, who founded Prepared Mind Innovations, would break up this
problem into the following parts:

• Tell the candidate that you’ll start simple and make it more complex as you work
through the problem

• Ask for word frequencies
• Make sure they get the simple map solution without coding it
• Tell them how much RAM they’ve got and how big the dataset is
• Ask them to estimate how big the process will get for the language they’d write this in
• If they get this far, then ask them to propose an alternative data structure that would

be more memory efficient because they’re out of RAM
• When they’re out of design ideas, have them code as far as they got

“Tell the candidate that you’ll start simple and make it more complex
as you work through the problem.”
- Greg Badros, Founder, Prepared Mind Innovations

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://linkedin.com/in/joshuatyler
http://www.prepared-mind.com/
https://www.linkedin.com/in/badros/

P.18w w w.hackerrank.com

So far, in Step 1, we’ve been focusing on the diverse categories of challenges, based
on what you need. Now let’s get down to the practical ways of designing challenges.
We looked at the question banks of various companies to pinpoint the patterns of
what makes a code challenge successful. Based on these patterns, here’s a checklist of
5 common mistakes to avoid and ensure each challenge will draw the best candidates:

This sounds like a no-brainer. But you’d be surprised as to how many companies
just get their own code challenge wrong. McDowell frequently consults with tech
companies of all sizes on their hiring process.

“When I’ve reviewed companies’ question banks, about 10% of answers are wrong,”
McDowell says.

And it’s not a matter of carelessness or minor bugs in typing up the solutions.
The challenge designer genuinely believed their algorithm was right until they were
proven wrong. Take the time to ensure that 100% of your answers are correct.
Otherwise, you’ll turn away a lot of strong candidates who were actually answering
the question right.

When it comes to algorithm code challenges, McDowell estimates that if 5%
of your candidates instantly know the solution to your question, then it’s likely
to be too easy. Easy challenges cluster the mediocre and the great, which of course
makes identifying great developers very difficult. Your challenge should be hard
enough to separate the average from the top.

The Challenge Checklist

01. Do you have the right answer?

02. Are your algorithm challenges challenging enough?

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.19w w w.hackerrank.com

In an algorithm code challenge, you should have at least one challenging question
where only about 20% of your candidates solve it perfectly. A good algorithm
question would have 2 (or more) different solutions, one more optimized than
the other. This leads to 3 tiers of performances:

The more tailored and specific the problem statements are to your industry, the higher the
chances of high-quality candidates completing code challenges as part of their application.

We did an experiment in which we compared two similar companies’ challenges—one with
a generic problem statement and another with a more tailored challenge. We saw a nearly
10% higher completion rate with the latter. Even anecdotally, we consistently see this direct
correlation time and time again. Candidates are more drawn to and interested in challenges
themed to your mission versus generic, cold challenges.

VMware, for instance, created a host of very detailed, complex problem statements that
delved deep into virtualization. You can see the Logical Hub Controller problem is richly
tailored to a typical virtualized datacenter problem they grapple with daily. By replacing
resumes with tailored code challenges for two years, VMware:

• Tier 1: The best candidates will pass all test cases because they implemented a
correct and optimal solution.

• Tier 2: The okay candidates will pass most of the test cases with an algorithm that’s
correct but suboptimal. Their code gives the right output, but times out on the
large test cases.

• Tier 3: The candidates you don’t want to hire won’t develop a correct algorithm at
all. If you use a platform like HackerRank, for instance, you can evaluate based on
the time to complete a test case, taking into account both asymptotic complexity
and the lower constraints. But it doesn’t impose a time condition on all problems.
It’s up to you as the problem designer to decide if the efficiency is important.

03. Are your problem statements detailed and tailored
to your company?

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://www.hackerrank.com/companies/vmware/challenges/hierarchical-page-table-translation
https://www.hackerrank.com/companies/vmware/challenges/logical-hub-controller
https://blog.hackerrank.com/vmware-increased-talent-funnel-decreasing-screening-time/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=pg20

P.20w w w.hackerrank.com

• Saved engineers hundreds of hours per quarter by only calling candidates who
passed the code challenges

• Increased the success rate for candidates who come onsite (compared to manual
resume screenings)

Problem statements can be incredibly daunting, but for senior engineers, this should
be a telling challenge. Engineers who can identify the right sub-problems, solve smaller
problems and then merge them together are more likely to be successful as leaders
in your organization. These larger principles of being able to break things down, spot
patterns and attack problems systematically are crucial for any senior engineer. In our
experience, companies that use laserfocused problem statements end up with a rela-
tively lower completion rate, but incredibly high interview-to-hire rate. This refers back
to the section: Designing Challenges that Gauge Depth of Thinking.

If a candidate gets stuck on some aspect of a problem, were they just unlucky? It’s
important to distinguish between these factors, and the best way to do this is by getting
multiple data points.

That is, ask a question that involves multiple hurdles. This way, if a candidate gets stuck
on one aspect, you can help them through it and they still have other logical leaps to
overcome (and thus additional data points for your evaluation).

For example, consider this question:

04. Did you rule out luck or bias?

Given an array of people, with their birth and death years,
find the year with the highest population.

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.21w w w.hackerrank.com

• The 1st hurdle is coming up with any correct solution. Most candidates should be
able to come up with a brute force algorithm (e.g., for each year that a person is
alive, walk through all the people to count the number of people alive in that year),
but a few won’t. If they don’t, give them some help and see if this was just a brief
lapse in reasoning or a consistent issue.

• The 2nd hurdle might be noticing that you don’t need to check the same year
repeatedly. You can use a hash table to cache this data.

• A 3rd hurdle might be noticing that you only need to check the years between the
first birth year and the last death year. So a candidate might first get that informa-
tion, and then proceed with checking that range of years.

• A 4th hurdle might be noticing that, actually, you only need to check the first birth
year through the last birth year. You don’t need to check years in which people
only died; they certainly won’t have the highest population.

This problem has a bunch of solutions, each of which presents a new hurdle.

05. Are you sure there aren’t any CS jargon words?

And so on, until we arrive at an optimal solution. Great candidates might even leap past
several hurdles at once, and that’s a great sign. A problem like this has so many hurdles
that you can more effectively see if there’s a pattern in the candidate’s performance.

For good measure, test out questions on your peers first. Ask at least 2–3 engineers to
solve the problem before unleashing onto your candidates. This helps you see what
sort of hurdles are in the question and what to expect from candidates.

There’s a common misconception that you need to have a computer science (CS)
degree in order to be a good programmer. In reality, only 40% of working software
engineers in one survey said they had a CS degree.

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

P.22w w w.hackerrank.com

When we wrote about this in TechCrunch, Wavefront CEO, Sam Pullara told us he agreed.

Senior candidates, particularly, are most likely to be unfamiliar with CS textbook words.
For instance, avoid dropping terms like “state machine” or “dependency injection”.
Likewise, in order to avoid ruling out senior engineers who haven’t taken computer science
fundamental classes (or don’t remember them), avoid questions that involve more obscure
algorithm knowledge.

In Step 1, you figured out what you want and designed the challenges to help surface
engineers who can help you trailblaze. Now you can focus on the most important part of
executing your new screening process: practicing tactful communication to engage engineers.

Senior engineers love a good challenge, but not if it’s time-consuming and futile. The truth is,
accomplished engineers will scoff at a cold email prompting them to spend 1-2 hours solving
a fundamental code challenge for a company they may never hear from again. It’s under-
standable—why should they? Chances are they’ve already earned their stripes putting in late
hours building software that’s reshaping our world one way or another. When designed and
delivered haphazardly, automated code challenges will be perceived as insulting.

It’s critical to infuse an element of empathy in the delivery and design of your challenges.
Cold emails with no explanation as to what they’ll be asked and why, are a surefire way to
lose senior engineers.
Those who make an attempt to make their candidates feel valued while scaling their
screening systems will be the winners of today’s competitive war for talented engineers.

“I’ve worked with a lot of great programmers over the years who don’t
have CS degrees. Their biggest disadvantage is that they often lack the
jargon of computer science.”
- Sam Pullara, CEO of Wavefront & ex-Yahoo & ex-Twitter

Step 3: Set Expectations, Warm your Candidates

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
http://techcrunch.com/2016/01/12/unlocking-trapped-engineers/
https://www.linkedin.com/in/spullara/

P.23w w w.hackerrank.com

There are a few things you can do to mitigate this:

Be very clear about what you intend to ask and what you expect. Don’t
catch them off guard.
This is an important step in ensuring that you’re not rejecting great people
just because. For instance, explain that we’re not trying to quiz them on
random things they don’t even need to use on the job.
Instead, fundamental binary tree questions help gauge problem solving and
critical thinking skills. If you’re sending code challenges with no explanation,
reasoning or preparation, your screening tool is an arbitrary knowledge test.
You’re bound to anger senior engineers.

Calculate the amount of time you need to take the challenges (usually
between 45 and 90 minutes) and give them more than enough time to
actually complete it.
Communicate this to your candidates and explain that it shouldn’t take you
more than an hour, but you have X hours to take it. It helps to simply artic-
ulate that you recognize that they’re extremely busy. Their time is valuable,
so there’s no intense time limit to submit.

Explain why you’re even asking them to do this.
For instance, if the code challenge replaces the resume or initial phone
screening, let them know. “We do this code challenge so you don’t have to
spend more time on the phone with multiple engineers.”

We did a quick analysis of dozens of code challenges and found they
consistently lack CS fundamental knowledge. Most senior engineers
are not going to have CS fundamental knowledge right off the bat. First of
all, nearly 60% of working software engineers don’t even have a proper
CS background in one study. Second of all, even if they did, it was likely too
long ago to remember anything that’s applicable in the real world.

01

02

03

04

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link
https://twitter.com/holman/status/154986236640112641
http://www.epi.org/publication/pm195-stem-labor-shortages-microsoft-report-distorts/

P.24w w w.hackerrank.com

Step 4: Calibrate After the Screening

In steps 1-3, you strategized on the best types of challenges to tease the engineers you
need. But what good is a code challenge screening if you’re testing different candidates
with different questions? Consistency can make the data you’re collecting meaningful.
Memelli finds that all too often, companies change the question after it’s already gone
out to some candidates, ruining your data set. After the initial screening, it’s important to
mirror your code challenges with the rest of your interviewing rounds.

It’s logical—folks who clear the automated code challenges online are more likely to
perform well in-person if the questions are consistent. Automated code challenges are
the best tool to predict who will perform well in the in-person interview.

Choose questions that you’ve actually asked in on-site interviews so that you can see how
candidates might react. This can help you frame and word the question appropriately as well.
Of course, this means you’ll have to retire those questions from your in-person interviews.

“So, target your questions to mirror the style of questions asked
in the actual interview as much as possible.”

Tying It All Together

Asking senior engineers to revisit fundamentals in an interview sounds outrageous.
And it is if you simply send a cold email without any proper preparation. But auto-
mated code challenges are the most objective and successful predictors of hiring we
have to filter through candidates at scale.

Gauging not only their intelligence but also how much they value fundamentals
through algorithm and data structure questions are strong instruments to find the
best engineering talent. If you set expectations and are mindful of senior engineers’
complicated hubris, you’ll have a stronger pool of senior engineers. And you’ll be set
up with a replicable system to build and scale your engineering team. A set of well-de-
signed mix of questions that test fundamentals, knowledge and depth of thinking, is
a good way to weed out candidates who don’t have the basic skills you need to build
revolutionary software.

S U C C E S S F U L S C R E E N I N G P R O C E S S

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=footer_link

Match Every Developer to the Right Job

HackerRank is a technology hiring platform that is the standard
for assessing developer skills for over 1,000 companies around the world.
By enabling tech recruiters and hiring managers to evaluate talent objectively
at every stage of the recruiting process, HackerRank helps companies hire
skilled developers and innovate faster.

www.HackerRank.com

hello@hackerrank.com

www.hackerrank.com

USA:

+1-415-900-4023

India:

+91-888-081-1222

UK:

+44-208-004-0258

Want to learn more?

Request Demo Free Trial

Or visit HackerRank.com

https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_hex
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoassessdevtechskills&utm_content=lastpage_link
https://www.hackerrank.com/products/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_cursor
mailto:hello%40hackerrank.com?subject=
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_link
https://hackerrank.com/request-demo/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_requestdemo_button
https://hackerrank.com/work/signup?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_freetrial_button
https://www.hackerrank.com/customers/?utm_medium=content&utm_source=pdf&utm_campaign=howtoscreensoftwareengineers&utm_content=lastpage_link

